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Abstract

Recent results in the study of quantum manifestations in classical chaos raise the problem of computing a very large

number of eigenvalues of selfadjoint elliptic operators. The standard numerical methods for large eigenvalue problems

cover the range of applications where a few of the leading eigenvalues are needed. They are not appropriate and

generally fail to solve problems involving a number of eigenvalues exceeding a few hundreds. Further, the accurate

computation of a large number of eigenvalues leads to much larger problem dimension in comparison with the usual

case dealing with only a few eigenvalues. A new method is presented which combines multigrid techniques with the

Lanczos process. The resulting scheme requires OðmnÞ arithmetic operations and OðnÞ storage requirement, where n is
the number of unknowns and m, the number of needed eigenvalues. The discretization of the considered differential

operators is realized by means of p-finite elements and is applicable on general geometries. Numerical experiments

validate the proposed approach and demonstrate that it allows to tackle problems considered to be beyond the range of

standard iterative methods, at least on current workstations. The ability to compute more than 9000 eigenvalues of an

operator of dimension exceeding 8 million on a PC shows the potential of this method. Practical applications are found,

e.g. in the numerical simulation of quantum billiards.
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1. Introduction

In the last decades, the issue of computing part of the spectrum of large matrices has been the object of

intensive research activities. Especially the increased need for solving large eigenvalue problems in many

scientific and engineering applications have triggered a remarkable shift toward new and efficient iterative
methods (see e.g. [38] and references therein). Usually, the number of needed eigenvalues does not exceed a

few hundred. In that context, special methods essentially based on blocking and deflation techniques have

been developed in order to be able to compute simultaneously or iteratively the different needed eigenvalues.
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However, recent developments in the study of quantum manifestation of chaos, raise in the foreground

the problem of computing a very large number of eigenvalues, usually several thousand (see e.g. [1,15,19]).

One is interested in the distribution of the spectrum in order to be able to extract valuable information

through statistical analysis of the eigenvalue sequence (see [1] for more details). This problem constitutes a

challenging numerical task for mainly two reasons: The accurate determination of a large number of ei-

genvalues with regard to their discretization errors relies on much finer discretization of the considered

operator than for the computation of a few eigenvalues. This leads to very large eigenvalue problems for

which the computation of even a single eigenvalue may become extremely cumbersome if possible at all,
considering classical iterative projection methods on conventional workstations. Further, it is well known

that the standard blocking and deflation techniques have limitations with regard to the number of computed

eigenvalues mainly due to memory requirement constraints as well as numerical instabilities connected to

rounding errors.

Despite increasing demand especially in the study of chaos in quantum mechanics, the development of

efficient methods for computing a very large number of eigenvalues has been paid little attention to. The

goal of this paper is to fill this gap for the case of elliptic selfadjoint operators.

The proposed approach does not make any assumption on the considered geometry and does not intend
to take advantage of parallel high-performance computer facilities. In fact, it allows to tackle such prob-

lems on the most common workstations. It relies on three main ingredients. The most expensive part of the

proposed algorithm is the resolution at each step of a linear system by means of a multigrid method. The

CPU costs and memory requirements scale linearly with the number of unknowns which allows one to solve

very efficiently large problems (several millions of unknowns) on a common workstation. The proposed

approach takes advantage of the so-called Lanczos phenomenon [10] which ensures that at some step despite

rounding errors, every distinct eigenvalue of the considered discrete problem is an eigenvalue of the tri-

diagonal operator generated by the Lanczos process. Furthermore , the filtering procedure proposed by the
key work of Cullum and Willoughby [11] has been considered in order to eliminate the spurious eigen-

values.

The outline of the remainder of this paper is as follows. In Section 2, we establish notations and for-

mulate the generalized eigenvalue problem resulting from a finite element discretization. Special emphasis is

put on the dependency of the discretization error with the real part of the considered eigenvalues. In Section

3, we describe the newly developed method. In Section 4, numerical experiments for the model problem of

the Poisson equation on various geometries are presented.

2. Finite element discretization

Let L be a selfadjoint uniformly elliptic differential operator on a bounded domain X � Rd . The classical

formulation of the eigenvalue problem for this operator reads

Lu ¼ ku in X; Bj u ¼ 0 on oX ðj ¼ 1; . . . ; qÞ; ð2:1Þ

where fBjgj¼1;...;q are boundary operators. This classical representation can be replaced by the following

variational formulation:

Find k 2 C; 0 6¼ u 2 V with aðu; vÞ ¼ kðu; vÞ 8v 2 V ; ð2:2Þ

where ðu; vÞ ¼
R

X u 
 vdx is the L2ðXÞ scalar product, V is an appropriate Sobolev space, V � L2ðXÞ � V 0

build a Gelfand triple and a : V � V ! R is a suitable sesquilinear form which may be assumed to be

V -coercive (see G�aarding theorem e.g. [44, p. 175]).
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Let Vh � V be a finite element space, where h 2 Rþ is the discretization parameter. The finite element

discretization of (2.2) reads (see e.g. [21, chapter 11] for more details):

Find kh 2 R; 0 6¼ uh 2 Vh : aðuh; vÞ ¼ khðuh; vÞ 8v 2 Vh: ð2:3Þ

In algebraic notation (2.3) reads as the following generalized eigenvalue problems

Lhuh ¼ khMhuh: ð2:4Þ

Lh (resp. Mh) represents the stiffness (resp. mass) matrix. Both are in our context symmetric and positive

definite. In the following, the subscript h (resp. l) refers to the mesh size (resp. the refinement level) of the

triangulation of X. In order to simplify the notations, these subscripts will be omitted if the discrete nature
of the considered space, operator or function is obvious. In the remainder of this paper, h:; :i (resp. h:; :iMh

)

describes the Euclidean scalar product (resp. the scalar product induced by the mass matrix Mh) and

fðks; usÞgs¼1;n (resp. fðkh;s; uh;sÞgs¼1;n) represents the eigenpairs of (2.2) (resp. (2.3)).
Since L is selfadjoint, the eigenfunctions of (2.2) and (2.3), respectively, can be chosen L2ðXÞ orthogonal

the corresponding eigenvalues are real. Furthermore, the eigenfunctions are the stationary points us of the
Rayleigh quotient

RðvÞ :¼ aðv; vÞ
ðv; vÞ ; ð2:5Þ

and the corresponding eigenvalues are ks ¼ RðusÞ. This characterization allows to derive the following

upper bounds for the discretization error of the computed eigenvalues (see [41]):

Lemma 1. Let L be an elliptic selfadjoint operator of order 2r which is Hk-regular, where k � 1 is the poly-
nomial degree of the finite element shape functions. Under the usual assumptions of the finite element dis-
cretization (see e.g. [8]) the eigenvalue error satisfies:

kh;s � ks6Ckk=rs h2ðk�rÞ: ð2:6Þ

For the more general non-selfadjoint case, more involved techniques allow to derive similar results

[4,7,31].

It is important to notice that the error bound (2.6) indicates that for a given triangulation the accuracy of

the higher eigenvalues deteriorates with the coefficient kk=rs . This behavior is observed in practice and shown

in Fig. 2. The accurate computation of a large number of eigenvalues leads therefore, to much finer dis-

cretizations compared with the classical case where only a few eigenvalues are needed. This is illustrated in

Table 1 for different finite element discretization orders. It has to be noticed, in that context, that an

economical discretization, measured in the number of unknowns, results from the trade-off between the
order of the discretization k and the discretization refinement level h [39]. This issue is inherently problem
dependent: firstly, it greatly depends on the number of needed eigenvalues and their distribution. Secondly,

a valid resolution of the considered geometry may rely on h-refinement.

Remark 1. On principle, the techniques presented in this paper could be derived in the context of the

boundary element method (BEM). However, a sparsity pattern similar to the matrices Lh and Mh, re-

spectively, (see Eq. (2.4)) obtained by means of a finite element method discretization cannot be obtained

in such a straightforward way considering the boundary element method and involves additional techni-

calities (see e.g. [22] and references therein). The treatment of geometries with corners which is of im-

portance in our context (see Section 4) imposes also a special treatment in the discretization step. Further,

the boundary element method is not well suited for differential operators with variable coefficients. This

V. Heuveline / Journal of Computational Physics 184 (2003) 321–337 323



case encompasses however the important class of problem where the considered geometries have non-
homogeneous material properties. For these reasons this method has not been further considered in this

paper.

3. Multigrid method and Lanczos tridiagonalization

The goal of this section is to describe the proposed solution process. It is based on the interplay between

multigrid techniques for linear systems and the symmetric Lanczos algorithm. Furthermore, the issue of the
validation of the computed eigenvalues, which is essential in our context, is addressed.

3.1. Lanczos tridiagonalization and spectral transformation

For simplicity, we first consider the standard discrete eigenvalue problem

Chuh ¼ khuh; ð3:7Þ

where Ch 2 Rn�n is symmetric and uh 2 Rn. The standard symmetric Lanczos method [27] can be interpreted

as a Galerkin projection method with respect to the Euclidean inner product on the Krylov subspaces

KmðCh; v1Þ :¼ spanfv1;Chv1; . . . ;C
m�1
h v1g;

where v1 2 Rn. This is equivalent to the following problem:

For s 2 ½1;m�, find ~uuh;s 2 KmðCh; v1Þ and ~kkh;s 2 R such that

~kkh;s ¼ min
S�KmðCh;v1Þ
dimðSÞ¼m�sþ1

max
u2S

hChu; ui
hu; ui ; ð3:8Þ

ðCh � ~kkh;sIÞ~uuh;s ? KmðCh; v1Þ: ð3:9Þ

Let Vm ¼ ½v1; . . . ; vm� be an orthonormal basis of KmðCh; v1Þ. Condition (3.8) obviously defines the subset
f~kkh;sgs¼1;...;m as the set of eigenvalues of the symmetric matrix

Hm :¼ V T
m ChVm: ð3:10Þ

Table 1

Number of converged eigenvalues Nk and number of validated converged eigenvalues N val
k (see Section 3.3) depending on the dis-

cretization

# Dofs Q1 Q2 Q4 Q8

Nk N val
k Nk N val

k Nk N val
k Nk N val

k

4225 48 0 154 0 240 0 513 0

16641 80 22 310 72 500 112 823 160

66049 157 48 613 148 1200 240 – –

263169 325 80 1230 324 2390 500 – –

�1 Mi. 657 157 2423 613 – – – –

�4 Mi. 1284 323 4915 1228 – – – –

�8 Mi. 2458 657 9256 2423 – – – –

Convergence is assumed for a relative discretization error below tol ¼ 1� 10�3.

Empty entries corresponds to an exceed of the memory capacity.
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Notice that due to the intrinsic structure of Krylov subspaces the matrix Hm is of Hessenberg form. Since Ch

is assumed to be symmetric, Hm is also symmetric and has therefore, the following symmetric tridiagonal

form:

Hm ¼

a1 b2

b2 a2 b3

b3 
 


 
 



 
 bm
bm am

2
6666664

3
7777775
: ð3:11Þ

The Lanczos algorithm provides an efficient set-up to compute the coefficients of the matrix Hm. It relies on

the following relation which for Krylov subspaces holds by construction:

ChVm ¼ VmHm þ wmeTm; ð3:12Þ

where hwm; vii ¼ 0 8i 2 ½1;m� and em ¼ ð0; . . . ; 0; 1ÞT. The expression (3.11) of Hm applied to (3.12) leads to
the well-known three-term recurrence relation

bjþ1vjþ1 ¼ Chvj � ajvj � bj�1vj�1 jP 2; ð3:13Þ

from which the Lanczos Algorithm 1 may be directly derived. To improve the numerical stability we

consider the modified Gram–Schmidt variant of the Lanczos algorithm [32,33]. In exact arithmetic, the

vectors fvigi¼1;...;m are orthogonal and for m ¼ n, Hm is a symmetric tridiagonal matrix congruent to Ch. In

practice however, severe loss of orthogonality due to rounding errors is encountered and leads to the ex-

istence of spurious eigenvalues. Their treatment is a crucial issue in our context and is postponed to Section

3.3.

Algorithm 1 (Symmetric Lanczos algorithm)
Choose v1 such that jjv1jj ¼ 1 and hv1; uh;si 6¼ 0 for s 2 ½1;m�
Set b1 ¼ 0, v0 ¼ 0

for i ¼ 1 to m do

wi :¼ Chvi � bivi�1
ai :¼ hwi; vii; wi :¼ wi � aivi
biþ1 :¼ jjvijj; viþ1 :¼ wi=biþ1

end for

The original problem (2.4) is now embedded in the previously derived framework. The relevant eigen-

values of problem (2.4) are in the lower part of the spectrum. In order to first gain convergence against these

eigenvalues we therefore, consider a standard spectral transformation leading to the following formulation

(see e.g. [13,30]):

½ðLh � rMhÞ�1Mh�uh ¼
1

kh � r
uh: ð3:14Þ

The operator ðLh � rMhÞ�1Mh is indeed non-symmetric but is selfadjoint with regard to the h:; :iMh
inner

product. The Lanczos method remains therefore, valid provided that we replace the Euclidean inner

product by h:; :iMh
, the inner-product associated to L2ðXhÞ. This leads to Algorithm 2 which is the core

procedure of our approach.
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Algorithm 2 (Spectral transformation Lanczos algorithm)
Choose v1 such that jjv1jjMh

¼ 1 and hv1; uh;siMh
6¼ 0 for s 2 ½1;m�

Set b1 ¼ 0, v0 ¼ 0

for i ¼ 1 to m do
wi :¼ ðLh � rMhÞ�1Mhvi � bivi�1
ai :¼ hwi; viiMh

; wi :¼ wi � aivi
biþ1 :¼ jjvijjMh

; viþ1 :¼ wi=biþ1
end for

The resolution of the linear system in Algorithm 2 is by far the most CPU time consuming part and is

solved by means of multigrid techniques (see Section 3.2).

The computation of the eigenvalues of the matrix Hm is done by means of the Lapack routine DSTERF,

which implements a variant due to Pal, Walker and Kahan of the QR method for symmetric tridiagonal

matrices [2]. The related CPU time (resp. memory) requirements behave asymptotically like Oðm2Þ (resp.
OðmÞ) and, since m � n, are negligible in the overall solution process.

Approaches based on rational Krylov subspaces [36], which allow one to adapt the shift term r along the
Lanczos iterations without a complete restart have been discarded. On the one hand, the operator

ðLh � rMhÞ may become indefinite, which may result in severe slow down of the convergence rate of the

multigrid iterations. On the other hand, these techniques involve matrices Hm, which are either Hermitian

[28] or of Hessenberg form [36] and which are generally non-tridiagonal i.e., with memory requirements

growing like Oðm2Þ. In practice this growth may become intractable when a large number nk of eigenvalues

is needed since m � 2nk.

Since the eigenvectors are not needed in our context, we do not make use of the relation (3.9). Therefore,

beside the multigrid data structure (see Section 3.2) and the mass matrix Mh, the memory requirements are
limited to four vectors. It scales asymptotically with the linear factor OðnÞ, where n is the number of degrees

of freedom of the discretization. This property is essential. It allows one with reasonable hardware re-

sources to handle the very large eigenvalue problems needed to gain a valuable discretization error for a

large amount of eigenvalues (see the a priori error approximation (2.6)).

3.2. Multigrid solver

The considered variant of the Lanczos algorithm (see Algorithm 2) involves the resolution of the linear

system

Ahw ¼ fh; ð3:15Þ

where Ah :¼ Lh � rMh and fh :¼ Mhvi. Since we assume L to be a uniformly elliptic differential operator

(see expression (2.1)), the resolution of the linear problem (3.15) falls in the classical framework of multigrid
theory (see e.g. [20,43]). Over the last decades, the development of multigrid techniques has been the object

of flourishing research activities resulting in a multitude of publications. The underlying algorithmic, al-

though it has become a well-known standard in the meanwhile, is still considered quite involving. We

therefore, restrict this section to a brief outline of the considered method putting special emphasis on the

specific aspects in our context. For more details, the reader should refer to classical literature such as

[20,43].

Multigrid methods, in their classical setup, rely on the existence of a nested triangulation hierarchy

fThlgl¼1;...;lmax with Thl � Thlþ1 which describes the original domain X. Replacing h by hl in (2.3) and (2.4)
allows one to define the corresponding discrete eigenvalue problems and therefore, the associated linear

systems (3.15) on that triangulation hierarchy. For elliptic operators, multigrid techniques are based on the

ability to successively filter on the grid hierarchy the high frequency modes of the error by means of the so
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called smoothers (see e.g. [20, chapter 3]). The resulting scheme depicted in Algorithm 3 in its most standard

setting has convergence rates which are independent of the discretization level l. The operator Pl
l�1 describes

an adequate prolongation operator between level l� 1 and level l (see e.g. [20] for more details). This leads
for Algorithm 3 to a complexity of Oðn log nÞ arithmetic operations and OðnÞ storage requirements.

Algorithm 3 (MG(l, u, f))
if l ¼ 0 then

u :¼ A�1
h1
f ; Exact solution on coarse grid

else
~uu :¼ Sðm1Þðu; f Þ; d :¼ Ahl~uu� f ; Presmoother/Restriction of residual

for j ¼ 1 to c do

v ¼ 0; MG(l–1, v, d)
end for

u :¼ ~uu� Pl
l�1v; u :¼ Sðm2Þðu; f Þ; Coarse grid correction/Postsmoother

end if

In order to solve the linear system (3.15), we consider the full multigrid method (FMG) which allows to

reduce the number of arithmetic operations to OðnÞ by embedding Algorithm 3 in a nested iteration in the

sense of Algorithm 4. The right hand sides fhl for l 2 ½1; lmax � 1�, where hlmax :¼ h are defined as the L2-
projection of fh on Vhl i.e.,

ðfhl ; vÞ ¼ ðfh; vÞ 8v 2 Vhl :

In the numerical experiments presented in Section 4, we consider V-cycles i.e., c ¼ 1 in Algorithm 3 and two

pre- and post-smoothing steps by means of the Gauss–Seidel method i.e., m1 ¼ m2 ¼ 2.

In addition it is important to notice that in order to gain optimal smoothing properties (see e.g. [20,24]),

the shift r is chosen such that Ah is positive definite. For the Laplace operator we therefore, impose r ¼ 0.

Algorithm 4 (Nested iteration)
Choose wstart 2 Vh1 ;
for l ¼ 1 to lmax do

If (l > 1) wstart ¼ Ihlþ1hl
whl ; (Prolongation)

Solve Ahlwhl ¼ fhl by means of MGðl;wstart; fhlÞ; (Algorithm 3)

end for

3.3. Assessment of the computed eigenvalues

The previously proposed numerical scheme allows one to calculate very large sequences of approxi-
mated eigenvalues. In practice, due to rounding errors, a number of approximated eigenvalues even ex-

ceeding the number of degrees of freedom can be found by discarding the theoretical limitation m6 n
leading to a breakdown in Algorithm 2. This somewhat incongruous situation emphasizes the necessity of

an a posteriori validation mechanism in order to separate true approximated eigenvalues from discreti-

zation artefacts and spurious eigenvalues. The treatment of this issue is presented in this section and beside

the use of multigrid techniques in the context of the Lanczos iteration, is a cornerstone of the proposed

approach.

The overall solution process can be interpreted as a nested Galerkin approximation scheme including
two levels: the discretization of the differential operator and the iterative resolution of the discrete eigen-

value problem by means of the Lanczos method.
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The error due to the finite element discretization is controlled by means of the a priori error estimation

(2.6). The eigenvalue problem (2.4) is solved on a hierarchy of refined discretizations until the predicted

asymptotic convergence behavior of the needed eigenvalues is detected. This is done by means of an ad-

equate pairing between the computed eigenvalues on successive refinement levels. This procedure is com-

bined with extrapolation techniques similar to those proposed by Blum et al. [6]. For the converged

eigenvalues, they allow one to gain an upper bound for the error discretization as well as an increased

accuracy on the last discretization level.

The validation of the computed eigenvalues in the Lanczos Algorithm 2 is much more tedious. Indeed,
the computation of a large number of eigenvalues nk relies obviously on a large number of iterations m in

the Lanczos procedure 2 since mP nk. For such large m, rounding errors result in a global loss of or-

thogonality of the Krylov subspace basis fvigi¼1;m leading to spurious eigenvalues (see e.g. [37]). Several

techniques based on full or partial reorthogonalization of the Lanczos vectors vi allow to cure this

problem. They are mainly based on keeping track either of the whole or part of the the basis fvigi¼1;m or

of the converged eigenfunctions (see [37] and references therein). The resulting storage and CPU time

requirements would be intractable in our approach. Our approach is based on the astonishing result due

to Cullum and Willoughby [11]. They argue that any eigenvalue of Hm that is pathologically close to
eigenvalues of ĤHm will be spurious, where ĤHm denotes the symmetric tridiagonal matrix of order m� 1

such that

ĤHmði; iÞ ¼ aiþ1 for i ¼ 1;m� 1;
ĤHmði; iþ 1Þ ¼ biþ2 for i ¼ 1;m� 2:

�
ð3:16Þ

The practicability and accuracy of this filtering scheme demonstrated in [11] for eigenvalue problems of

order at most 5000, are observed in our context of very large eigenvalue problems. The resulting Algorithm

5 allows indeed to sharply differentiate between true and spurious eigenvalues. It should be emphasized that

the multiplicities of multiple eigenvalues cannot be computed using this approach. This is by no mean a
restriction in our applications where only the eigenvalue distributions are needed.

Algorithm 5 (Spurious eigenvalue filtering algorithm)
Label the eigenvalues f~kkkgk¼1;m of Hm as true eigenvalue
Compute ĤHm by means of (3.16) and its eigenvalues fk̂kkgk¼1;m�1
for i ¼ 1 to m do

if ~kki is simple then

if there is k 2 ½1;m� 1� such that ~kki � k̂kk < maxð1; ~kkiÞ 
 Tol then
Label ~kki as spurious eigenvalue

end if

end if

end for

The loss of global orthogonality of the Krylov subspace basis results in a matrix Hn which may not be

equivalent to Ch (see expression (3.10)). Fortunately, it can be observed and partly proved that local or-
thogonality inherited from the three term recurrence (3.13) numerically suffices because of the so-called

Lanczos phenomenon (see [10] and references therein): For large enough m (eventually m > n), every distinct
eigenvalues of Ch is an eigenvalue of Hm. The argumentation in [10] is based on the equivalence between

the Lanczos tridiagonalization procedure and the conjugate gradient method (see [16,26,38]). It takes

advantage of the well-known minimization properties of the conjugate gradient method despite rounding

errors. In practice, we observe that the convergence of the nk discrete eigenvalues is achieved for

m 2 ½3
2
nk; 2nk�.
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It is important to notice that the resolution of the linear system in Algorithm 2 must be performed very

accurately since it is not included in any defect correction scheme (see [24] and reference therein). In

practice, the solution is computed up to machine accuracy. For quantitative results on the convergence rate

of the multigrid method for the Laplace operator we refer to Trottenberg et al. [42].

4. Numerical experiments

The development of the proposed method in Section 3 has been initiated by concrete needs in connection

with the study of quantum manifestations of classical chaos by means of spectral fluctuation properties of

dynamical systems [19]. Although general and applicable to any selfadjoint elliptic problems, our approach

is illustrated in this section by problems arising in that extremely challenging area.

The theoretical investigation of two-dimensional Euclidean and Riemannian geometries, so-called bil-

liard, has been the object of intensive research activities over the last few decades (see [19] and references

therein). Plain billiards belong to the class of Hamiltonian systems with the lowest degree of freedom in

which chaos can occur. The classical billiards, i.e., plane two-dimensional areas in which ideal particles
propagate with specular reflection on the walls, have as analogon the quantum billiard, the spectral

properties of which are completely described by the stationary Schr€oodinger equation

DWð r!Þ ¼ �k2Wð r!Þ; ð4:17Þ

Wð r!ÞjdX ¼ 0; ð4:18Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffi
2mE

�h2

r

for particle of mass m and energy E. For classical billiards the dynamic of particles can be either regular,

chaotic, or mixed depending only on the shape of the boundary. The natural question whether this clas-
sification applies for the associated quantum billiard is still an object of intensive research activities. It has

been found out that the distribution of the spectrum of the stationary Schr€oodinger problem (4.17) and

(4.18) is the determining factor in this analysis. The pioneering work of Gutzwiller [18] establishes the

relationship between the density states of chaotic quantum systems and the periodic orbits of the classical

system. Further, it can been shown that the spectral fluctuation properties of the quantum system coincide

with those of the ensemble from Random Matrix Theory (RMT), whereas for time reversal invariant

systems, the relevant ensemble is the Gaussian orthogonal ensemble (GOE) (see [17] for more details).

These different approaches have in common that they rely on the knowledge of a large number of ei-
genvalues of the stationary Schr€oodinger equations (4.17) and (4.18) i.e., of the Laplace operator on the

considered Billiard geometries. Great effort has been made to construct microwave resonators which in that

context act as analog eigenvalue solver since they allow to determine experimentally a great amount of

eigenvalues (see [35] and references therein). These resonators are based on the well-known analogy be-

tween the stationary Schr€oodinger equation for a two dimensional and infinitely deep potential and the

stationary Helmholtz equation

DE
!¼ �k2 E! ð4:19Þ

with

k ¼ 2pf
c

; ð4:20Þ
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where f denotes the frequency, c the velocity of light and E
!

the electric field, which vanishes on the

boundary. Indeed, in a sufficiently flat cavity, the electric field is perpendicular to the bottom and top

surfaces of the billiard i.e.,

E
!¼ jE!j e!z:

It has to be noted that experimentally the maximal resolved frequency fmax has to fulfill fmax 6 c
2d, where d is

the height of the billiard.

The method described in Section 3 allows the numerical treatment of the subsequent problem on almost

any geometry. The presented results which range from simple and isospectral geometries to to the well-

known Bunimovich billiard geometry clearly show the potentiality of this method. All computations have

been performed on a Pentium III/700MHz/2GB PC. The eigenvalue solver is defined and implemented in a

special module of the more general purpose C++ finite element package HiFlow [23]. The eigenfunctions

plotted to illustrate the complex features appearing on these special geometries have been computed by
means of the method presented in [24].

For the p-finite element discretization, we consider shape functions built by tensor product of the in-

tegrated Legendre-polynomials

/iðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2i� 1

2

r Z x

�1
Li�1ðnÞdn;

where iP 2, /ð�1Þ ¼ 0 and LiðnÞ describes the Legendre polynomial of degree i (see [3,29] for more details).
This choice has the advantage for the special case of the Laplace operator that the degrees of freedom inside

each cell fully decouple from each other leading to economical storage requirements for the stiffness matrix

as well as efficient smoothing steps in Algorithm 3. This property does not hold for the mass matrix needed

in Algorithm 2 for the inner products. As illustrated in Table 1, at equal number of degrees of freedom, the

needed storage requirements increases therefore, greatly with the order of discretization.
It has to be noted that assuming a linear distribution of the spectrum ks � s (case of the unit square) and

under the minimal constraints on the absolute error jkh;s � ksj6 tol for s 2 ½1;m�, the a priori estimation

(2.6) allows to derive the asymptotic of the needed number of degrees of freedom. For bilinear finite ele-

ments, it corresponds to Oðm2Þ (resp. Oðm3Þ) degrees of freedom for two- (resp. three) dimensional ge-

ometries. For biquadratic finite elements, these asymptotic behaviors reduce to Oðm3=2Þ (resp. Oðm9=4Þ) on
the corresponding geometries.

4.1. Validation on simple geometries

The stationary Schr€oodinger equations (4.17) and (4.18) may be reformulated in the following form

considering the framework of Section 2 (see expression (2.1)):

�Du ¼ ku in X; u ¼ 0 on oX: ð4:21Þ

In order to validate our approach, we first consider the unit square and the unit disc for which the spectrum

may be derived analytically [9]. For X :¼ ½0; 1�2 the eigenvalues of the Laplace operator are known to be

kij ¼ ði2 þ j2Þp2 i; j;2 N n f0g:

For the unit disc X :¼ fðx; yÞ : x2 þ y2 < 1g. The eigenvalues are defined by

klapkj ¼ l2
kj; k ¼ 0; 1; . . . ; j ¼ 1; 2; . . . ;

where lkj is the jth root of the kth Besselfunction of the first kind.
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The grid hierarchy is obtained by uniform refinement of a start grid, projecting the new nodes on the

boundary. For the unit circle, the coarse grid and the third refinement level are plotted on Fig. 1. Fig. 2

shows the behavior of the relative discretization error for Q1, Q2, and Q4 isoparametric finite elements.

These results are in good agreement with the a priori error estimation (2.6). They illustrate the expected

superiority of the higher order finite elements with regard to the discretization error of the lowest eigen-

values as well as that this gain diminishes for the higher eigenvalues. The asymptotic behavior of Q2 and Q4

on Fig. 2 illustrates this phenomenon which results from the larger increase of the term kk=rs on the right-

hand side of expression (2.6) for higher order finite elements.
In practice, it is crucial to be able to validate the eigenvalues a posteriori. Table 1 shows the de-

pendence of the number of converged eigenvalues Nk on the number of degrees of freedom as well as

on the order of the finite element discretization. An eigenvalue is considered to have converged for a

relative discretization error below tol ¼ 1� 10�3. The corresponding number of a posteriori validated

eigenvalues by means of the procedure depicted in Section 3.3 is denoted by N val
k . It determines the

number of eigenvalues which can be detected to have converged without the knowledge of the exact

Fig. 1. Start grid (left), third refinement (right) for problem (4.21) on the unit disc.

Fig. 2. Relative error discretization of the converged eigenvalues on the unit square for Q1 (261169 unknowns), Q2 (261169 unknowns)

and Q4 (66049 unknowns).
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solution. Despite the theoretical superiority of higher order discretizations, Table 1 clearly shows that

they have the main drawback that for a given memory capacity they are restricted to a much smaller

discretization hierarchy than their lower order counterpart. Due to their inherent coupling the storage

requirements shift indeed from OðnÞ to Oðn2Þ for higher order, where n is the number of unknowns. In
practice we therefore, consider Q2 finite elements. Using the same notations, the discretization error

history for the unit circle is given in Table 2. Table 3 summarizes the CPU cost distribution related to

the computation of the 9256 smallest eigenvalues for the unit square using �8 million unknowns (see

Table 1). This distribution is typical for all considered computations. It clearly shows the predominance

in the CPU costs of the multigrid scheme which behaves like OðnÞ.

4.2. Isospectral geometries

By asking ‘‘can one hear hear the shape of a drum?’’, Kac [25] referred to the question whether the

Laplacian operator with Dirichlet boundary conditions could have identical spectra on two different

planar regions. A counterexample proposed by Gordon et al. [14], the so-called GWW isospectral

drum, answered the question negatively. It is well known that the computation of the spectrum of these

isospectral drums is numerically so involved (see the survey [12]) that the determination of the higher

eigenpairs has been realized by means of experiments based on microwave devices [40]. Clearly, iso-

spectral geometries and especially the GWW drums (see Fig. 3) offer a challenging and ideal set-up to

validate our approach.
The computed spectrum is validated by means of two different approaches. Firstly, the computed

spectra of both the GWW drums (see Fig. 3) are compared (see Fig. 4). One can clearly derive from

these results the isospectral property of both drum geometries. Secondly, the numbers of computed

eigenvalues less than k denoted by ~NNðkÞ are compared with the exact number of eigenvalue NðkÞ less

than k approximated by the corrected Weyl formula for polygons which is [5]

NðkÞ � A
4p

k � P
4p

ffiffiffi
k

p
þ
XN
i¼1

1

24

p
ai


� ai

p

�
; ð4:22Þ

Table 3

CPU time distribution for the computation of the 9256 smallest eigenvalues for the unit square with �8 million unknowns and Q2 finite

elements

CPU time (s) CPU time (%)

Multigrid Smoother 1:7� 105 42

Grid transfer 1:3� 105 32

Residual 2:8� 104 7

Lanczos Inner products 3:2� 104 8

Spectrum of Hm 8:2� 103 2

Miscellaneous 3:7� 104 9

Table 2

Number of converged eigenvalues for the unit circle with Q2 finite element discretization

# Dofs 5057 20358 81665 327169 �1 Mi. �4 Mi. �8 Mi.

Nk 0 62 184 345 789 1834 4356

N val
k 0 10 31 83 234 734 1624

The notations are similar to Table 1.
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where A (resp. P ) denotes the area (resp. perimeter) of X, N the number of corners and aj are the interior
angles at the vertices of X such that 0 < ai < 2p for i 2 ½1;N �. The corresponding results for the drum on
the right-hand side of Fig. 3 are presented in Fig. 5. Similar results are obtained for the second drum

geometry.

Fig. 4. Relative error obtained by comparing with each other the spectra of both drums defined in Fig. 3 on the sixth refinement level

(�60,000 unknowns) (left) and on the seventh refinement level (�20,0000 unknowns) (right).

Fig. 3. Third refinement grid of the GWW isospectral drums (upper row), and corresponding 30th eigenfunctions (lower row)

computed on the sixth refinement level (�20,0000 unknowns) considering the method described in [24].
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4.3. Bunimovich stadium

The so-called Bunimovich stadium (a quarter of which is depicted in Fig. 6) belongs to the class of

billiard geometries which has been widely investigated both theoretically and experimentally (see e.g. [34]

and reference therein). In the classical limit this model billiard is known to be fully chaotic. The properties

of the associated quantum billiard have been extensively studied experimentally through the construction of
electromagnetic cavities.

The goal of this section is to validate the proposed numerical approach through comparisons with ex-

perimental data. We restrict these comparisons to the results presented in [1,15,34]. We assume a Bun-

imovich stadium with radius r ¼ 0:2m and length l ¼ 0:36m corresponding to c ¼ l=r ¼ 1:8. We consider

further a statistical analysis of the computed eigenvalue sequence based on the nearest neighbor spacing

distribution (NND) given in form of an histogram in Fig. 7. For a given sequence of eigenvalues

fk1; . . . ; kmg one compute the spacings si :¼ ðkiþ1 � kiÞ=�ss, whereas �ss is the average distance of the computed
eigenvalues. The proper normalization of the obtained spacings yields then the spacing distribution denoted
P ðsÞ in Fig. 7 (see [35] for more details).

The obtained distribution on the finest grid is in very good agreement with the experimental results pre-

sented in [1,34]. It coincideswith theGaussianOrthogonal Ensemble (GOE) distribution. The deviation of the

Fig. 5. Integrated eigenvalue density for the GWW drums. The dashed line represents the corrected Weyl�s formula (4.22) and the solid
line the computed number of eigenvalues ~NNðkÞ below k on the respective refinement levels. A zoom of the left curves in the range

k 2 ½0; 200� is presented on the right.

Fig. 6. Third refinement grid of the Bunimovich stadium c ¼ 1:8 and corresponding 30th eigenfunction computed on the sixth re-

finement level (�12,0000 Unknowns) by means of the method descried in [24].
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GOEdistribution also observed experimentally is discussed in [34]. InTable 4,we show themaximal frequency

in the sense of Eq. (4.20)which can be accurately resolved on the considered discretization level. The validity of

the computed eigenvalues checked by means of the following approximation of the Weyl formula:

Fig. 7. Nearest neighbor spacing distribution (NND) in the quarter of the Bunimovich billiard c ¼ 1:8 (see Fig. 6) is represented by the

histogram and is compared to the Poisson and GOE distribution for the following refinement level: level 5/28993 unknowns (up/left),

level 6/115329 unknowns (up/right), level 7/460033 unknowns (down/left), and level 8/1.8 million unknowns (down/right).

Table 4

Number of valid eigenvalues considering condition (4.23) and corresponding maximal resolved frequency in the sense of expression

(4.20) on the grid hierarchy for a Q2 discretization

Refinement level 4 5 6 7 8

# Unknowns 7329 28993 115329 460033 1.8 million

# Validated eigenvalues 38 234 435 665 927

Maximal frequency (GHz) 4.1 6 .2 9.3 11.2 14.1
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NðkÞ � A
4p

k � P
4p

ffiffiffi
k

p
;

where A denotes the area of the billiard and P its perimeter. A sequence of eigenfrequencies is considered to
be valid if the number of computed eigenvalues less than a k denoted by ~NNðkÞ fulfills following condition:

jNðkÞ � ~NNðkÞj6 5: ð4:23Þ

5. Conclusion

In this paper, we propose a new method for the computation of a large number of eigenvalues of sel-
fadjoint elliptic operators which is based on the interplay of the Lanczos tridiagonalization scheme and

multigrid techniques for linear systems. The resulting scheme requires OðmnÞ arithmetic operations and

OðnÞ memory capacity, where n is the number of unknowns and m the number of needed eigenvalues. The

numerical experiments which focus on the numerical simulation of chaos manifestation in quantum me-

chanics, clearly validate the proposed approach which opens new perspectives in that context. It allows

indeed to consider complex geometries (containing for example holes) for which the experimental reali-

zation may be delicate if possible at all. Furthermore, the systematic study of the transition from integrable

to non-integrable classical chaotic behavior on successively deformed geometries may be tackled numeri-
cally. These aspects as well as the embedding of the proposed approach on parallel platforms will be the

object of a forthcoming paper.
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